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This program will read several input files and provide a best fit set of values for the function

provided by the user, using either the C-statistic or the X 2 statistic method. The program consists
of one main routine and several functions and subroutines. Detailed description of each function

and subroutine is covered in section 2.

A brief description of the C-statistic and the reason for its application is found in section 6.
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1 Prior to Running the Program

The user must replace the function named 'PREDICT' with another function, which defines the

equation that the user wishes to minimize. The sample function provided by the program minimizes

the following equation: f = N • E -_, where N= the normalization constant, E--energy in each bin

and 7=slope. After providing the new function to the program, the user may or may not wish to

modify the main program (cfit.f). In the main program all the input and output files are opened,

input files are read, constant values are assigned and the 'POWELL' minimization subroutine is

called 'NSRCH' times which will control the further flow of the program. 'NSRCtt' is one of the

assigned constants in the main program and wUl control how many times should the program try

to minimize the equation. If NSRCH is 1, then; after the equation is minimized once, the program

will terminate. If NSRCH is 2, the values calculated in the first round of minimization are used

as the initial starting point and the equation is minimized again (NSRCH is set to 50 in the main

program). Other constants assigned in the program which the user may wish to change, are:

EPSIL= 1.0E-20 Epsilon used as a default value for when the function becomes

zero.

MODE = -1 Determines method of weighting least squares fit, used only when

Chi-Square statistic minimization method is requested.

if MODE=2 weight(i)=sigmay(i) (Pre-Calculated), where sigmay(i)=
standard deviation of each observation.

if MODE=I weight(i)=l./(sigmay(i)**2) (Instrumental).

if MODE=0 weight(i)=0. (No Weighting).

if MODE=-I weight(i)=l./y(i) (Statistical).

NFREE= 13 Number of degrees of freedom

Prior to execution of the program, the user must first compile the main program (cfit) along

with the user's provided function (PREDICT) and all other supplied functions and subroutines; and

then link them all together.

2 Functions and Subroutines

SLCTLU Selects the first available logical unit number for input and output files.

PREDICT function to be minimized.

In the sample program provided, the following function is minimized:

N*(E -'Y) which is P(1)*XDATA**-P(2) in terms of the variables used in the program. As

discussed earlier, the user must replace this function with another, which defines the equation

of the function they wish to minimize. Following is the fortran program (for the above equa-

tion) used to test the program; make sure this routine is replaced with one which defines the

function you wish to minimize.
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Name: PREDICT

Filename: /usr/shue/cstat/predict.for

Type: function

Language: FORTRAN 77

Purpose: to calculate the values in the power law

by direct integration, function = N*E**-GAMMA
N = Normalization Constant

GAMMA = Slope

E = Energy

Subroutines: none

Variables:

Date: 1/19/88
Author: David R. Shue

FUNCTION PREDICT (IVAL, P)

PARAMETER(NMAX=50, NBINS= 100)

DIMENSION P(NMAX)

COMMON/CSTAT/ISTAT, OBSERV(NBINS), XDATA(NBINS+I)

.

C calculatespectrum

C

AA = XDATA(IVAL)**(-P(2)+I.0)

BB = XDATA(IVAL+I)**(-P(2)+I.0)

DIFF = BB - AA

IF (P(2) .EQ. I.) WRITE(*,*) 'divideby zero in predict...'

TEMP = P(1)/(-P(2)+I.0)
PREDICT = TEMP * DIFF

_

C end function

C---

RETURN

END



POWELL Minimization of a function FUNC of N variables. (FUNC is not an argument, it is a

fixed function name). Input consists of an initial matrix XI whose dimensions are N by N,
and whose columns contain the initial set of directions; and FTOL, the fractional tolerance

in the function value such that failure to decrease by more than this amount on one iteration

signals doneness. NPAR the number of parameters in the user's function. On output, P is set

to the best point found, XI is then the current direction set, FRET is the returned function

value at P, ITER is the number of iterations taken at P, and IERROtt indicates if the number

of iterations exceeded the maximum allowed (200).

USAGE: subroutine POWELL(P,XI,N,FTOL,ITER,FRET,IEI_ROtt)

LINMIN Linear minimization routine. Given an N dimensional point P and an N dimensional

direction XI, moves and resets P to where the function FUNC(P) takes on a minimum along

the direction XI from P, and replaces XI by the actual vector displacement that P was moved.

Also returns FP_ET, the value of FUNC at the returned location P. This is all accomplished

by calling the routines MNBttAK and BRENT.

USAGE: subroutine LINMIN(P, XIN, N, FRET)

MNBttAK Given a function F1DIM, and given distinct initial points AX and BX, this routine

searches in the downhill direction (defined by the function as evaluated at the initial points)

and returns new points AX, BX and CX which bracked a minimum of the function. Also

returned are the function values at the three points FA,FB and FC.

USAGE: subroutine MNBRAK(AX, BX, CX, FA, FB, FC, F1DIM)

BRENT Given a function F1DIM, and given a bracketing triplet of abcissas AX, BX and CX (such

that BX is between AX and CX, and F(BX) is less than both F(AX) and F(CX)), this routine

isolates the minimum to a fractional precision of about TOL using BRENT's method. The

abcissa of the minimum is returned as XMIN, nd the minimum function value is returned as

BRENT, the returned function value.

USAGE: function BttENT(AX, BX, CX, F1DIM, TOL, XMIN)

F1DIM Accompanies LINMIN.

Constructed by LINMIN, F1DIM is the value of FUNC along the line through the point P

in the direction XI. F1DIM is an artificial function of one variable, which is the value of the

function FUNC. LINMIN communicates with F1DIM through a common block, it then calls

our familiar one-dimensional routines MNBI_AK and BRENT and instructs them to minimize

F1DIM.

USAGE: function F1DIM(ANUMBER)

FUNC Evaluate C-statistic for fit to data

C = 2 * _(YFIT - V * ln(YFIW))

OR ....

Evaluate reduced chi-square for fit to data

FCHISQ = _((V- YFIT)**2 / SIGMA **2) / NFttEE

where:

YFIT = PttEDICT(I,P) = value of the function PREDICT



3 Input and Output Files

For description of the variable names refer to section 4.

RUNFIT.DAT (Input file)

line 1, ISTAT and FTOL

line 2, P(1) and XI(1,J) for j=l .. NPAR

repeat line 2 for each of the parameters in the function defined in PREDICT.

OBSERV.DAT (Input file)

line 1, OBSERV(1)

repeat line 1 for each bin.

XDATA.DAT (Input file)

line 1, XDATA(1)

repeat line 1 for energy in each bin.

SIGMAY.DAT (Input file)

line 1, SIGMAY(1)

Repeat line 1 for standard deviation of each observ(I).

NOTE: This file is used only if the chi-square minimization is selected and the

desired MODE. The default value of -1 (statistical method) for MODE is hard

coded in the main program and must be changed if other methods are preferred.

(refer to section 4 for possible options for MODE).

RUN.DAT (Output file)
This file contains NSRCH+I lines, where NSRCH is the number of times that

function should be minimized. It is assigned in the main program.

first line indicates the minimization method (ISTAT) selected l=C-statistic and

2=Chi-square.

second through last line contains the following information:
- iteration number

- P(1) through P(I), where I is the number of parameters in the function PREDICT
- FRET

- ITER

4 Variable Description

ISTAT

FTOL

MODE

= 1 Minimize using the C-statistic method

= 2 Minimize using the Chi-square statistic method

The criterion for doness (real). Fractional tolerance in the function

value such that failure to decrease by more than this amount on one

iteration signals doneness.

Method of weighting least squares fit (used when ISTAT = 2)

= 2 (precalculated) weight(i) = sigmay (i)

= 1 (instrumental) weight(i)= 1./(sigmay(i)**2)

= 0 (no weighting) weight(i) = 0.

=-1 (statistical) weight(i) = 1./y(i)



NFREE
NPAR
ITER
FRET
P(I)
XI(I,J)
OBSERV(I)
XDATA(I)
SIGMAY(I)

Numberof degreesof freedom
Numberof parameters in the user's function

Number of iterations (integer)

Returned function value at P (real)

Initial point for each parameter in function PREDICT for I=l .. NPAR

New set of direction for each parameter I for I=l .. NPAR and J=l .. NPAR

Array representing the number of observation in each bin. (I=l .. NBINS)

Energy in each bin, (I=I..NBINS)
Standard deviations of each observation

(used when ISTAT=2 and MODE > 0) for I=l .. NBINS

5 Sample Input and Output Files

In this section we provide an example of input files and the files returned as output. These can

be used as an example and as a test case to verify your software installation. Note that the input

and output files listed here are for the program running with the test function 'predict' defined in

section 2.

• RUNFIT.DAT (Input file)

1,.0001

1.0,1.0,1.0

.50,1.0,.50

OBSERV.DAT (Input file)

324.000

252.000

205.000

199.000

197.000

175.000

157.000

136.000

138.000

136.000

129.000

111.000

130.000

125.000

117.000



• XDATA.DAT (Input file)

0.095

0.145

0.195

0.245

0.295

0.345

0.395

0.445

0.495

0.545

0.595

0.645

0.695

0.745

0.795

0.845

• SIGMAY.DAT (Input file)

1.41

0.00

1.41

1.41

2.00

1.73

0.00

1.00

0.00

1.73

0.00

1.41

1.00

0.00

1.41

• RUN.DAT (Output file)

1

1 2016.20 0.524285-21147.2 12

2 2016.20 0.525515 -21147.2 1

3 2016.20 0.525515 -21147.2 1
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6 Discussion of the C-Statistic

In X-ray astronomy, the most common technique to fit data to models has been the application of a

non-linear regression to a hypothetical source spectrum convolved with the response of the detector,

seeking to minimize the X2 value generated by the model and the data set. This basic approach was

first applied in X-ray astronomy by Gorenstein, Gursky and Garimire (1968).

Two advantages to this technique are, first, that the fitting procedure is 'robust', meaning that

the fit will generally converge, and secondly, that the technique is 'efficient', meaning that the

confidence intervals on the parameters and the probabilities for rejecting the model are as strong

as possible. Confidence intervals define the range allowed on each parameter within the significance

level we choose (for example, random noise variations will allow the best fit parameter to vary within

the 90% confidence interval 90% of the time).

Despite the generally satisfactory results of using this technique, we run into problems using

it with small numbers of events. An important mathematical advantage of X 2 fitting is that, for

adequately large samples, X 2 fitting is asymptotically independent of the shape (i.e. distribution)

of the events in the sampling bins, under the null hypothesis (Lindgren 1976, for example). (The

null hypothesis is the assumption that the only deviation between model and data is random mea-

surement error.) Unfortunately, in many cases in astronomy, and in X-ray astronomy in particular,

the data samples are not large enough to assure X2 reaches the asymptotic limit. In practical terms

the important question is when and how severely X2 fitting departs from its asymptotic behavior in

the context of X-ray astronomy.

Nousek and Shue (1989) discuss this problem. In this work ideal models having a power law

distribution of photons (N(E) = No. E-7), were used to generate data sets. The data sets differed

from the ideal by being drawn randomly, bin by bin, from a Poisson distribution having a mean

equal to the ideal mean. Thus the data sets correspond to actual samplings of the ideal distribution

under the conditions of statistical fluctuations that we expect in a photon counting experiment. By

applying a fitting procedure to the generated data sets we attempt to reconstruct the parameters

(No and 7 in this case) that were used to generate the data.

If the fitting is unbiased the parameters returned as the best fit should approximate the original

ones. The degree to which they do not should be a reflection of the noise introduced by the

statistical fluctuations, and should be consistent with the confidence interval on the parameters

predicted by the fitting. By repeating the process with additional random data sets the fluctuations

should average to zero, leading to a more precise reconstruction of the initial parameters. Thus by

accumulating the mean of the best fit parameters we should find it tending to the original value.

The result of our work for the simple X 2 fitting is that X 2 does not reconstruct the initial values

when the number of counts per bin is low. The following table illustrates the systematic bias

introduced into the best fit parameter by using X2 fitting when few events are found in some bins.

The table contains the ratio of the mean best fit parameters to the true value used to generate the

data sets. Hence if the fitting supplied no bias the ratios should approach one. Instead the ratios

show clear and significant deviations from one. (Note only fits that converged are included in the

tabulated means.)
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Table I. Chi-Squared Minimization - Marquardt's Method (250 Fits)

Results for Parameters and Convergence
Wide Boundaries Narrow Boundaries

N

25

50

75

100

150

250

500

750

1000

2500

5000

10000

Ncatc/No 7c_tc/7 Percent

Converg.
.411 1.455 .74

.457 1.365 .73

.522 1.213 .79

.558 1.156 .76

.655 1.095 .81

.713 1.086 .89

.820 1.052 .96

.876 1.032 .98

.916 1.020 1.00

.958 1.010 1.00

.976 1.004 1.00

.985 1.003 1.00

Neatc/No 7care�7 Percent
Converg.

.611 1.180 1.00

.633 1.141 1.00

.639 1.129 1.00

.647 1.119 1.00

.723 1.092 1.00

.764 1.072 1.00

.855 1.042 1.00

.904 1.026 1.00

.943 1.016 1.00

.977 1.006 .98

.982 1.005 .93

.990 1.002 .88

The X 2 fitting used Marquardt's method for finding the best fit, with additional constraints

limiting the range allowed for the parameters. In the table above the 'Wide Boundaries' case set

these constraints so loosely that they did not restrict the fitting procedure, while in the 'Narrow

Boundaries' case the constraints kept the final result relatively close to the ideal values. The two

cases simulate the effect of a totally unconstrained 'automatic' fitting (the 'Wide' case), and a

carefully hand selected 'manual' fitting (the 'Narrow' case).

At first glance it would appear that careful constraints applied as in the 'Narrow' case would

surmount the small count problem. The bias is smaller and the fits all converge. The next table

reveals the difficulty.

Table II. X 2 Minimization - Marquardt's Method

Results for Minimum X _ and a

Wide Boundaries Narrow Boundaries

N Reduced X 2

25 .714

50 .866

75 .887

100 .988

150 1.069

250 1.151

500 1.160

750 1.120

I000 1.088

2500 1.132

5000 1.142

i0000 1.057

Reduced X 2

1.801 .677

.955 .785

.610 .846

.394 .912

.328 .946

.232 1.038

.192 1.030

.170 1.030

.067 1.025

.055 .982

.027 .999

.019 .985

ff

.546

.370

.260

.221

.192

.143

.104

.080

.068

.038

.026

.019

The Reduced X 2 is the mean of the convergent best fit value, and the (r is the r.m.s, of the

distribution of best fit value for 7. At large N both eases have similar (r. At small N the 'Narrow'
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casethe a becomes comparable to the width of the boundaries (three in this case) and the apparent

accuracy of the fit comes purely from choosing the boundaries symmetrically about the ideal answer.

(Note also that the violation of the assumption of Gaussian statistics causes the Reduced X 2 to fall

below one.)
In short traditional X 2 fitting techniques can lead to biases of 50% for very small count data

sets, and errors of 10% even if 100-1000 counts are available. Efforts to improve the fitting by tight

parameter constraints result in achieving fits which only reflect the prejudices of the constraints.

The issue of low count statistics in photon counting experiments has been directly addressed in

the work of Cash (1979). He proposes a maximum likelihood statistic based on the Poisson, rather

than Gaussian probability distribution. His statistic, called the C-statistic, is defined,

N

C = 2 E(mi - niln(mi))
i----1

and mi and ni are the number of counts predicted by the model and observed, respectively. Oper-

ationally this proceeds exactly as in the X 2 minimization case, including the inference of confidence

intervals on the parameters. (For one parameter the 68% confidence interval is found by finding the

parameter values where C = Cmi,_ + 1. For more parameters, this becomes C = C,nir, + f(V) where

f(v) can be found in a table in Lampton, Margon and Bowyer 1976).
Cash shows that the C-statistic goes to X 2 in the limit of large n, and that it should be more

efficient than X 2. He also explicitly applies it to the case where each photon is alone (i.e. only one

or zero photons in every bin).

Table III lists the results of using X 2 and the C-statistics. The inital starting vectors of the fits
for the two statistics were the same.

Table III. Comparison of X 2 and C-Statistic (250 Fits

X 2 Minimization C-Statistic Minimization

N No, to�No 7_tc/7 Fraction

Converged

25 .709 1.152 .96

50 .647 1.134 1.00

75 .636 1.130 1.00

100 .673 1.109 1.00

150 .707 1.094 1.00

250 .767 1.072 1.00

500 .863 1.040 1.00

750 .905 1.025 1.00

1000 .937 1.017 1.00

2500 .973 1.007 1.00

5000 .988 1.003 1.00

1000 .996 1.001 1.00

N_,t_/N,, %,tJ7 Fraction

Converged

1.269 .958 .86

1.079 .998 1.00

1.078 .995 1.00

1.053 .996 1.00

1.015 1.005 1.00

1.019 1.000 1.00

.997 1.004 1.00

.997 1.002 1.00

1.001 .999 1.00

1.005 1.000 1.00

.984 1.003 1.00

1.003 1.000 1.00

The immediate condusion is that for this problem the Cash statistic introduces virtually no

systematic bias to the fit results.

The principal disadvantage of the C-statlstic is that there is no value corresponding to the

Reduced X2 value with which we can measure the goodness of the fit. For the C-statistic there exist

no analogous tables with which the goodness of fit can be determined. We can only determine the

best parameters by minimizing the function, but we have no criteria to reject the model.
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The reason general tables can not be produced is that the distribution in each bin is different,

and depends on the model. This exactly the regime in which X2 falls. One could simulate the effect

of random deviations for the given model and observed data set, but the simulation would have to

be repeated for each data set and each model.
An alternative approach to low count statistics of relatively recent development in modern sta-

tistical theory is the bootstrap. Rather than assuming knowledge of the distribution function the

bootstrap uses the observed data as an empirical sample of the distribution. Analysis proceeds

by generating randomized data sets from the observed one, and fitting the randomized ones using

any proper fitting technique. The distribution of fit results should tend to the true one, and the

uncertainty can be estimated from the width of the distribution.
The key to the bootstrap is the generation of randomized data sets. The simplest visualization

in the case of X-ray astronomy is to imagine that a marble corresponding to each observed photon is

placed in a bag; the bag is shaken and a marble chosen at random. After recording which marble was

found the marble is returned to the bag and the process is repeated until a number of events equal

to the observed total has been collected. The resulting data set is not identical to that observed,

but it has a very similar statistical nature, within the fluctuations expected from random chance.

Hence the result of repeating the fitting on the similar data sets is to give a very good estimate in

the uncertainty without having to assume knowledge of the underlying probability distribution.

The bootstrap is a subject of active statistical research (Efron 1982), and holds great potential,

particularly for its ability to accurately gauge the confidence intervals on the parameters.
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